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Symmetry properties of the density of states in the Brillouin 
zone for a one-dimensional periodic Heisenberg magnet 

W Florek and T Lulek 
Institute of Physics, A Mickiewicz University, Poznali, Poland 

Received 16 December 1985, in final form 23 September 1986 

Abstract. Symmetry properties of the density of states in the Brillouin zone for the 
Heisenberg model of a finite one-dimensional magnetic crystal are investigated using a 
general prescription of Weyl, which consists here in an analysis of the action of the ring 
of endomorphisms of a cyclic group in the space of quantum states of the magnet. It is 
shown that the density of statesis constant on orbits of the group of automorphism in the 
Brillouin zone. Each such orbit can be thus interpreted as a generalised star of a wavenum- 
ber. It is also shown that the distribution of states in the discrete one-dimensional Brillouin 
zone is governed by some selection rules on the lattice (i.e. partially ordered set with unique 
maximal and minimal elements) of subgroups of the cyclic group. 

1. Introduction 

In this paper, which is an extension of a paper by one of us (Lulek 1984, hereafter 
referred to as I),  we consider some symmetry aspects of the space of quantum states 
of a finite linear chain, consisting of N spins s, distributed in nodes of the chain 
according to the symmetry of the cyclic group C,. Such a system provides a one- 
dimensional finite version of the model of a magnet with localised carriers of the 
magnetic moment (‘spins’), introduced by Heisenberg (1928, see also Mattis 1965, 00 2 
and 7, and Dyson 1956, and references therein) to explain the origin of magnetism in 
crystal insulators. The space of quantum states of the Heisenberg model of a magnet 
constitutes the tensor product of N copies of (2s + 1)-dimensional single-node spaces 
spanned on standard Ism) states of the spin s. A similar construction of the space of 
quantum states is intrinsic in the Ising model (Ising 1925, see also Newel1 and Montroll 
1953). Due to such a construction of the space of quantum states, the Heisenberg, 
Ising and some related models proved to be useful tools, not only for a description 
of magnetic properties of crystals, but also found thorough applications in several 
other problems of quantum statistical physics, such as phase transitions (Wilson and 
Kogut 1974, Bak 1982), coherence (Dicke 1954, Takahashi and Shibata 1975), disor- 
dered crystals (Elliott et a1 1974), defects in crystals (Mermin 1979) and others. A 
particularly important role is associated with the one-dimensional magnet with periodic 
boundary conditions considered in the present paper, since the relative simplicity of 
the spatial distribution of nodes in the linear chain yields mathematically rigorous 
results for this case, and, on the other hand, the actual state of technology allows us 
to investigate experimentally several magnetic systems which are well described by 
such a model (see Bonner 1978 and references therein). Such linear models are also 
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applied in theoretical searching for superconductivity in organic crystals (Allender et 
al  1974 and references therein), or in attempts for modelling some biological processes 
(Tsetlin 1969, Reiss 1964). 

The problem considered here is associated with the distribution of quantum states 
of the magnet over the one-dimensional Brillouin zone, defined as the set of wavenum- 
bers k, i.e. of exact quantum numbers resulting from the translational symmetry of the 
model. To state our problem precisely, we propose the following notation. Let 

(1) f i = { j \  j = 1,2, .  . . , N) 

be the set of integers, 1 , .  . . , N, 

C N  ={I?, '+' mod N} 

be the cyclic group in additive notation, 

be a permutation on the set fi (so that a( j )  and e( j )  are the image and counterimage 
of the element j E fi under the permutation a respectively), and let ZN = { a }  be the 
symmetric group on the set fi. The formula 

defines an embedding of the cyclic group C N  into the symmetric group E N .  The 
embedding C ,  c Z, defines in the set fi a cyclic order (Hall 1967), consistent modulo 
N with the natural order for the ring 2 of integers. The set fi with this cyclic order 
will be identified with the set of nodes of a one-dimensional magnetic crystal subjected 
to periodic Born-Karman boundary conditions (with a magnetic linear chain) and the 
group C N  given by equation (2), with its action on fi given by equation (4), as the 
translation group of this crystal. The linear chain fi thus constitutes an orbit of the 
regular representation of the group C N ,  and the cyclic order determines the sequence 
of nodes with respect to an (arbitrarily chosen) initial node. 

The natural assumption of invariance of the Hamiltonian of the magnetic chain 
with respect to the group C N  of the symmetry of the geometric distribution of nodes 
implies that the irreducible representations r k  of this group over the field C of complex 
numbers, given by the characters 

x r k ( j )  = e x p ( 2 ~ i k j / N )  j e C N  ( 5 )  
are exact quantum numbers for stationary states of the magnet. Therefore, the set 

} (6) 
* ( N / 2  - l) ,  N / 2  
* ( N  - 1)/2 

for N even 
for N odd 

klk=0,*1,*2 , . . . ,  

of wavenumbers k admissible by periodic conditions constitutes a finite equivalent of 
the one-dimensional Brillouin zone B ' =  (-T, 773, i.e. the set of (classes of linear 
equivalence of) irreducible representations (over C) of the translation group of the 
crystal (we use here, for convenience of notation, integer k, which differ from standard 
spectroscopic wavenumbers by a factor 2 r / a ,  with a being the lattice constant of the 
crystal). We hereafter refer to B as the Brillouin zone of the crystal fi. In particular, 
the wavenumber k = 0 corresponds to the centre of the Brillouin zone B, and for N 
even there exist k =  N/2,  the boundary of the zone B. 
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Let m = -s, -s + 1, . . . , s, be standard magnetic quantum numbers of the single- 
node spin s. For convenience of notation, we will denote these quantum numbers by 
the label i E n' = { 1,. . . , n } ,  n = 2s + 1 ,  by putting mi = - s  - 1 + i. Then the linear closure 
IC n' of formal linear combinations of elements of the set n' over the field C constitutes 
the space of quantum states of a single-node spin, and the linear space 

L =  l-J O(lc q, 
j s  A 

(7) 

i.e. the tensor product of N copies (IC f i ) j ,  j E fi, of the single-node space IC n' is the 
space of quantum states of the whole magnet. Moreover, the set 

iA={f: fi+ { l i l , .  . . , i N ) l  4 E ii for j~ fi} (8)  

of all mappings of the set fi of nodes of the magnet into the set n' of single-node spin 
states (assumed to be orthonormal in IC n'), constitutes an orthonormal natural basis 
in the unitary space L, so that 

L = l c  iA dim L = n = ( 2 s  + l)N. ( 9 )  

For example, the mapping f= In,. . . , n), i.e. the mapping given by f(j) = n,j E fi, 
corresponds to a ground state of a ferromagnet, with all single-node spins aligned, 
which yields the maximal magnetisation directed along the quantisation axis. 

The action of the group Z,-on the set fi generates in a natural way the permutation 
representation P on the set n" by the formula 

p ( ' ) ~ i l , . . . , i N ) = ~ ~ @ ~ l ~ ~  i @ ( N ) )  (+EX, t i , ,  . . . ,  i N ) € r i N .  (10) 
By a natural extension, P becomes a linear representation acting in the space L. The 
decomposition of the subduction PJ. C ,  of the linear representation P to the subgroup 
C N  c X N  into irreducible representations r k ,  k E B, of the translation group C, ,  given 
by the formula 

where p ( k )  is the multiplicity of r k  in P (i.e. the number of linearly independent states 
of the magnet with a given wavenumber k from the Brillouin zone B ) ,  determines the 
mapping p :  B + Z ,  referred (after I)  to as the density of states in the Brillouin zone. 

An analytic formula for the mapping p has been given in I .  It follows that, in 
general, the density p is not homogeneous in the Brillouin zone B, contrary to the 
text-book case of the density of quantum states of a free particle inside a box or a 
one-dimensional potential well. In a sense, the mapping p :  B + Z can be treated as a 
discrete analogue of the mapping p ' :  B'+ R of the continuous Brillouin zone B' for 
the infinite linear chain into the field R of real numbers, so that p'(  k') is the density 
of states at k'E B'. For example, for the one-dimensional motion of a spinless free 
particle in a potential well we have for the lowest band p ' =  1/2.rr, so that this density 
is homogeneous in the whole Brillouin zone B'. The corresponding homogeneity for 
the three-dimensional motion of a free electron in a box provides, together with the 
Pauli exclusion principle, the ground for the notion of the Fermi surface. This 
homogeneous density p' is essentially a result of the first law of Newton, i.e. of the 
assumption of mechanical equivalence of all inertial reference frames, implicit in the 
notion of a free particle (despite the existence of the physically distinguished reference 
frame-that in which the box or well rests). We intend to investigate the nature of 
the inhomogeneity of the density p in the Brillouin zone B in this paper. In particular, 
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we are going to point out the regions of constant density and describe the symmetry 
of the distribution of inhomogeneities. 

The solution of the above problem happens to be essentially a realisation of a 
general prescription given by Weyl(l952, see also Mozrzymas 1976, Lulek et a1 1985a), 
according to which all invariant properties of a physical model can be drawn by means 
of detailed analysis of the groups of automorphisms of the mathematical structure 
used for a formal description of the model. This prescription can be looked at as an 
extended version of the postulate of relativity. 

The mathematical tools used here to present a solution of the problem are dissipated 
over several branches like the theory of Abelian groups (Fuchs 1970, Hall 1959, Kurosh 
1960, Mozrzymas 1976), theoretical arithmetics (Hasse 1979, Narkiewicz 1977) or the 
theory of lattices with the associated combinatorics (Hall 1967, Rybnikov 1972, 
Satschkov 1977, Gratzer 1978), and involve such notions as rings, lattices, endomorph- 
isms, orbits, socles, etc. Essentially, the main body of the paper is organised with the 
intention of exposing only the most important aspects of the realisation of the Weyl 
prescription, whereas details like definitions and theorems from several branches of 
mathematics involved in the presentation of the solution, as well as a natural, ‘physical’ 
interpretation of some notions, are collected in two appendices (with some repetition 
ensuring continuity of presentation). 

2. A realisation of Weyl’s prescription 

According to the prescription of Weyl, we have to study the group Aut C N  of all 
automorphisms of the group C N  for translations of the physical system with its action 
in the space L of quantum states. In our case it happens that a much more thorough 
description of the physical situation can be achieved by considering a little more 
general structure, namely the ring EndCN of all endomorphisms of the group CN,  
enclosing Aut C N  as its multiplicative group. 

A detailed description of the structure of the ring End C N ,  needed to define and 
analyse the action of an arbitrary endomorphism 7 ,  E End C N ,  1 E fi, in the space L 
of states of our magnet, is collected in appendices 1 and 2. Here, we only mention 
an important role of the arithmetic structure of the integer N, i.e. of the decomposition 
(Al . l )  into prime factors p (‘atoms’ of N ) ,  since this leads in a natural way to the 
notion of the lattice K (  N )  of subgroups of the group CN. The elements of K (  N ) ,  i.e. 
the subgroups of CN, are classified by divisors K of N. We shall show that the invariant 
properties of the considered density of states are adequately described in terms of 
elements of the lattice K ( N )  only. Appendix 1 contains a geometric presentation of 
the lattice K ( N )  as a transmission circuit in a form of a finite simple hypercubic 
lattice, with the minimal ( K  = 1) and maximal ( K  = N )  elements being the input and 
output respectively. The ‘elementary cell’ in this lattice is spanned by the socle T (  N )  
of N, i.e. by the set T ( N ) c  K ( N )  of prime divisors p of N, and an arbitrary divisor 
K E K (  N )  is presented as a vector with integer components 0 s C Y ~ ( K )  d ap( N ) ,  p E 

T (  N ) ,  given by appropriate arithmetic exponents (see equation (A1.5)). 
The action of the group C N  on the set fi of nodes of the magnet, determined by 

equation (4), is isomorphic with the additive action of the ring End CN, i.e. with the 
action of the additive group C N  of EndCN on the Brillouin zone B (equations 
(A2.6)-(A2.8)). Moreover, one defines the multiplicative action of the ring End C N  
on the set fi, given by equation (A2.18). Those endomorphisms 7,  E End C N  which 
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are invertible under multiplicative action (i.e. those for which lcd(l, N )  = 1, so that I 
and N are mutually prime), form the Abelian group Aut C,. A combination of the 
additive action of the ring End CN with the multiplicative action of the group Aut C N  
leads us in a natural way to the notion of holomorph Hol C N  as the group given by 
equation (A2.20), and constituting a generalisation of the notion of a space group of 
a crystal. In this generalisation, the invariant subgroup 

is the translation group of the crystal fi, whereas the corresponding quotient group, i.e. 

(Hol CN)/C, =Aut CN (13) 

can be interpreted as the group of ‘generalised rotations’ of the crystal. Not all 
‘generalised rotations’ have the meaning of isometry transformations of the crystal, 
but only those ‘geometric automorphisms’ which preserve or reverse the cyclic order 
on N. Evidently, the geometric automorphisms constitute (for N > 2) the two-element 
group Q = { 7, , 7,-,} Q Aut C, (see equation (A2.22)), which is an ordinary point 
group for the linear chain with the unit element 7, and one-dimensional inversion 
7,-] (see equation (A2.23)). An arbitrary automorphism v1 E Aut C N  determines 
(uniquely) a generator 1 of the group C,, i.e. an element of order N in the additive 
group C, of the ring End C N  ( / E  GI in the notation of equation (A2.24)). The action 
of the holomorph HolC, on the crystal j?, given formally by equation (A2.19), 
determines an embedding Hol C, c Z,, constituting, according to equation (3) ,  a 
covering of the embedding C,cX, defined by equation (4). In the spirit of the 
prescription of Weyl, the permutations belonging to the holomorph Hol CN characterise 
all the invariant properties of our crystal j?, whereas all other permutations of the 
symmetric group E, break the symmetry of a linear chain. 

It is natural in such a context to decompose the Brillouin zone B given by equation 
(6) into disjoint subsets B, given by equation (A2.28), constituting a generalisation of 
the notion of the star of a wavevector, known from the representation theory of space 
groups. Namely, the generalised star B,, K E K ( N ) ,  consists of all wavenumbers 
generated by the group Aut C N  from the divisor K E K (  N) c B. The number of elements 
IB,I of this set is given by the value ( ~ ( 2 )  of the Euler function cp (equation (A2.14)) 
for the complementary divisor 2 = N/K in the lattice K ( N ) .  In particular, the gen- 
eralised star 

B N = { K = N = O m o d  N} (14) 
is the centre of the Brillouin zone B, and for N even there exists the generalised star 

the boundary of B. Equation (A2.14) implies that these are the only one-element 
generalised stars. They coincide with ordinary stars for the linear chain, i.e. with orbits 
of the point group Q a  Aut C N ,  given by equation (A2.22). All other ordinary stars 
consist of pairs {k, - k } c  B from ‘interior’ of the zone B. Thus a generalised star 
encloses, in general, several ordinary stars. 

The principal property of the decomposition (A2.27) of the Brillouin zone B into 
generalised stars B,, K E K (  N), is the invariance of this decomposition under the action 
of the group Aut C N ,  determined by the multiplicative action 5 of the ring End C, 
(equation (A2.26)). It results from the fact that, by definition, generalised stars B, are 
orbits of the group Aut C,. We now observe that the lattice K ( N )  of divisors of N 
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plays not only the important role of the lattice of subgroups of the translation group 
CN, but also serves to classify generalised stars in the Brillouin zone. 

The embedding Hol C, c X, implies a natural action of the holomorph Hol C, 
(so that, in particular, Aut C,-{(N, ~ l ) ( ~ l ~ A u t  C,}) in the space L of quantum 
states of the magnet, given by equation (7) as the subduction PJ  Hol C,, where P is 
the (linear) representation of ZN in L, defined by equation (10). Let Lk, k E E, be the 
linear closure of all carrier spaces of the irreducible representation r k  of the group 
C, in L, so that 

is a unique decomposition of L into the direct sum of mutually orthogonal subspaces 
Lk and dim Lk = p(  k). It is easy to observe that an evident invariance of the space L 
under the action P of the symmetric group Z, implies that each element ( N ,  vl) E 

Hol C, c Z, generates a permutation on the set {Lkl k E E }  of subspaces invariant 
under C,. In other words, the subduction ( P  3. Hol C,) .1 Aut C, generates the action 
y of the group Aut C, on the set {Lkl k €  E } ,  given by 

k E E  (17) 
7( . , )= (  Lk ) / E *  

L+( Ik mod N) 

where $: *+ E is a bijection defined by equation (A2.7). It implies, together with 
equation (A2.26) that if one identifies the set {Lkl k E E }  with the Brillouin zone E, 
then the action y coincides simply with the action of Aut C N  on E, defined in 
appendix 2. The fact that each P ( o ) ,  (TE Z N  (so, in particular, each P ( N ,  q), T ~ E  
Aut C,), is a non-singular operator implies that all spaces L+(lkmodN), generated from 
an arbitrary k E E by the group Aut C,, have the same dimension. We obtain, therefore, 
that for an arbitrary K E K ( N )  c E 

p (  k )  = dim Lk = constant kE E ,  (18) 
so that the density of states of the magnet is constant on each generalised star in the 
Brillouin zone. Thus this density depends effectively only on K ,  i.e. it is a function 
w :  K (  N )  + Z on the lattice K ( N )  of divisors of N. It is perhaps the most important 
conclusion to be drawn from an application of Weyl’s prescription for our case. 

3. Interpretation of the analytical formula for the density of states 

We proceed to study, in the spirit of Weyl’s prescription, the structure of analytical 
expression for the density of states p ( k ) ,  k E E, obtained in I. To this end, we will 
look at the derivation from a structural point of view, introducing some change in 
notation (in particular, our actual crucial divisors K ,  K ~ ,  and K ‘  stand for the complemen- 
tary divisors 2, KO and K’ in I ) .  

Character theory yields 

1 
p(k)  =- x p ( m j )  exp(-2~rikj/N) 

N j c f i  

where ~ ‘ ( a , )  is the character of the representation P for the element U, E C N  c Z,, 
given by equation (4). The decomposition (A2.24) allows us to treat j E  fi, c C N  as 
a pair ( K ,  t),  where K E K ( N )  is a divisor of N and 5~ (;), , i.e. 6 is mutually prime 
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with the complementary divisor C (see the notation of equation (A2.25)). In other 
words, an arbitrary j e  fi can be uniquely presented as a product 

j = [ K  K E K ( N )  5 E ( 4 1 .  (20) 

The character x‘(aj)  is given, due to some combinatorial arguments (see I ) ,  by the 
formula 

j e  fi, (21) P X‘(Grj) = x  (a,) = n* 

so that it is constant on each subset fi, c CN,  K E K ( N ) ,  i.e. on classes of the group 
C, with respect to the action of the group Aut C, (i.e. on equivalents of generalised 
stars in the ‘real space’). Similarly, the decomposition (A2.27) of the Brillouin zone 
B into generalised stars yields the presentation 

k = $ ( 5 0 K O )  K O E  K ( N )  So€ (Lo), (22) 

with $ given by equation (A2.7). As a result, we rewrite equation (19) in the form 

with separation of the sum over the group C N  into two sums: over elements K of the 
lattice K ( N )  and, for each K E K ( N ) ,  over [ E  ( L ) ,  (such that 5~ E fi,). 

The sum over [ in equation (23) constitutes a sum of primary roots of degree 
I?’= N / K ’  from unity, with 

K‘=lCd(KKo, N). (24) 

Evaluation of this sum is structurally associated with the multiplicative action (A2.18) 
of the ring EndCN on the set fi (i.e. also on the group CN) .  Using equations (20) 
and (22) we can write down this action in a form 

K E K ( N )  S E ( 4 I  (25) 

where K ’ E  K ( N )  is given by equation (24) and [‘=[O[mod C’E(KP’),. Each 
endomorphism v1 : C N  + C N  thus carries a class fiK, K E K (  N ) ,  into the class I?,,, K ‘  = 
lcd(KKO, N ) ,  such that the restriction ~ , l * -  is a surjection in which the counterimage 
of an arbitrary element ~ K ‘ E  fi,, consists of c p ( i ) / c p ( C ’ )  elements of the class fi,. 
Moreover, each pair of endomorphisms (vl, vl’) from a class f iKo (i.e. I = 5 0 ~ 0  and 
I ’  = & K ; ,  or, equivalently, k = $ ( I )  E B,, and k‘ = $ ( 1 ’ )  E BKo) carry a given class fiK 
into the same class f i K ,  and differ only up to modulo an action within the class f i K .  

The multiplicative action of the ring End C N  on the group C N  thus generates the 
action of the lattice K ( N )  on itself in a natural way, i.e. the mapping p :  K ( N ) +  
Map K ( N )  ( . . { u : K ( N ) ~ K ( N ) } = K ( N ) ~ ( ~ ) ) ,  given by 

(26) 

In particular, we have the implications 
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In general, the action p of the lattice K ( N )  on itself can be looked at as a displacement 
of its elements towards the maximal divisor N. This displacement becomes more 
obvious by rewriting equation (24), determining the action p, in the form 

K’=lCd(KKo, KI?)’K lCd(K0, K )  (29) 

corresponding (complementarily) to equation (A14) of I. 
The sum over 5 in equation (23) is associated with the restriction q ) f i l , ,  1 = ,$O~O. 

Simple arguments from number theory (Narkiewicz 1977, Hasse 1979), in particular 
those related to cyclotomic polynomials (Foulkes 1972) yield 

independently on 50 E 

Let w : K ( N )  + 2 be the mapping determined by 

W ( K o ) =  W , ( K o )  K O €  K ( N )  
K E K ( N )  

where 

Then the desired expression for the density of states for the linear magnetic chain in 
the Brillouin zone can be written in the form 

P(k)  = W ( K 0 )  kE B K o c  B (33) 

reflecting all invariant properties of this density. In particular, this form displays 
explicitly that the density is constant on each generalised star B,, in the Brillouin zone 
B, and, moreover, equation (32) relates this density to the action p of the lattice K (  N )  
of divisors of N on itself, as given in equation (26). 

4. A discussion of the density of states 

The total density of states can be naturally decomposed into the sum of contributions 
U,,  K E K ( N ) ,  according to equations (31)-(32), so that the contribution classified by 
a particular divisor K E K ( N )  is proportional to n K / N ,  and the ‘weight’ of this 
contribution, given by equation (30), is constant on each generalised star B,, in the 
Brillouin zone and depends on the element K ’ E  K ( N ) ,  given by equation (24). The 
distribution of states in the Brillouin zone is thus determined essentially by the action 
p of the lattice K ( N )  on itself, with a mapping P ( K ~ ) ,  K ~ E  K ( N )  c B, carrying the 
class fi,, K E K ( N ) c  C N ,  into the class f iK,.  

The main contribution corresponds to the maximal divisor K = N and is given by 

Wp.r(KO) = n N / N  K ~ E  K ( N ) c  B (34) 

so that it is homogeneous within the whole Brillouin zone. It thus provides a 
homogeneous background, on which corrections appear in a form of several distribu- 
tions of condensations and holes, associated with the other divisors of the lattice K (  N ) .  
As shown in I ,  the corrections w,,  K # N, for N large enough, become very small in 
comparison with the background w N .  
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The presence of the Mobius function in equation (32) yields an additional selection 
rule, which provides vanishing of values O , ( K ~ )  for some contributions w, at some 
generalised stars B,,c B. Namely, the value P ( K )  of the Mobius function becomes 
zero on the whole lattice K ( N )  with the exception of all divisors K which are the 
nodes adjacent to the elementary cell of the hyperparallelepiped K (  N ) ,  spanned on 
the socle T (  N ) .  Simple combinatoric considerations associated with the geometric 
presentation of the lattice K ( N )  yield a 'cut-off' of contributions corresponding to 
generalised stars outside some vicinity of the maximal divisor K ~ =  N in the hyper- 
parallelepiped K (  N ) .  We can discuss briefly (although somehow vaguely) a cut-off 
from the long-wave side. To formulate this cut-off exactly, let us consider a contribution 
w, for a fixed K E K( N )  and let K~~~~ E K (  N )  c B be given in terms of arithmetic 
exponents as 

for ap(K) 3 1 
C X p ( K o m i n ) = {  otherwise 

Then the non-vanishing values w, ( K ~ ) (  # 0) result only for 

~ o ~ [ ~ O m i n ,  NI. 

(35) 

In the geometric presentation of the lattice K (  N ) ,  the segment , NI has such a 
shape that it encloses the complementary divisor i E K ( N )  together with all its nearest 
neighbours 'from the bottom', so that K~~~~ is the minimal element of this segment. 

In particular, for K E [ K , ,  NI (see equation (A1.7)), i.e. for the segment constituting 
the elementary cell of the hyperparallelepiped K (  N )  spanned on the cosocle 7T( N ) ,  
we obtain K~~~~ = 1, so that the cut-off becomes ineffective, and thus the corresponding 
contributions are distributed over the whole Brillouin zone (inhomogeneously, with 
the exception of K = N ) .  All other contributions do not vanish only for some distin- 
guished generalised stars B,,, namely for those which satisfy the selection rule (36) 
on the lattice K ( N ) .  Moreover, we have 

i.e. the union of classes corresponding to generalised stars yielding non-vanishing 
values of the contribution U,  forms the subgroup CEOm," of C N ,  generated by the divisor 
K ~ ~ ~ ~ .  The distribution of the corresponding condensations or holes therefore display 
a discontinuous nature: all these points constitute a 'subzone' CgOm," in the (finite) 
Brillouin zone B, with the 'lattice constant' (i.e. the distance of nearest neighbours in 
the subzone CZom," imposed by the cyclic order in the zone B )  given by K ~ ~ ~ ~ ,  and the 
total number of points given by the complementary divisor K O m l n .  

It is worthwhile to observe that the definitely discontinuous character of the 
distribution of condensations and holes in the Brillouin zone can be attributed to a 
disagreement between the 'natural' order in the set of integers determining the cyclic 
order in the Brillouin zone given by equation ( 6 )  and the partial order in the lattice 
K ( N )  of divisors of N .  As a result, the decomposition (A2.27) of the Brillouin zone 
B into generalised stars B,, becomes, except for trivial cases, a decomposition into 
subsets which are 'rarefied' in B, i.e. each pair ( k ,  k ' ) ,  k c  B,,, k'E B,,, of wavenumbers 
of a given generalised star B,, is separated in B by some wavenumbers belonging to 
other stars. A similar remark applies to the decomposition (A2.24) of the crystal fi 
into classes fi,, K E  K ( N ) .  It seems to us that such rarefied subsets constitute a 
characteristic feature of the finiteness of the linear chain. 
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Within the subzone CPOmlnc B, defined by the contribution w,, the Mobius function 
differentiates generalised stars B,, = C 30m,n into those corresponding to condensations 
of states ( p ( K ' )  = 1 )  and holes ( ~ ( 2 ' )  = -1 ) .  Due to a sum rule 

each contribution U,,  K # N, is a balanced distribution of condensations and holes on 
the homogeneous background w N .  

The centre of the Brillouin zone, i.e. the generalised star BN = { k = O =  N mod N }  
is associated with the highest condensation of states as the intersection of all subgroups 
CPom,n of the group C N .  We obtain for this case 

1 
p ( 0 )  =; n*p(K) = max{p(k)l kE B}. 

K E K ( N )  
(39) 

The centre is the nearest neighbour (in the cyclic order) of wavenumbers k = i l  E B, , 
where 

1 
p (  i 1 )  = n"p ( K )  = min{p( k) I k E B }  

K E K ( N )  

so that the generalised star B1 is associated with the maximal number of holes in B. 
For N even, the density for the boundary BNIZ  = {k = N/2}  is 

We a!so quote some special cases in detail in order to demonstrate some characteris- 
tic features of inhomogeneities of the density p. The contributions w p ,  corresponding 
to the coatom p = N / p  of the lattice K (  N), take on a very simple form, given by 

,, N / P  if ldc(Ko,p) = p  
otherwise 

W p ( K 0 )  =-x 
N 

so that they describe the (homogeneous) distribution of condensations for all those 
wavenumbers k E B, which are multiplicities of p ,  together with homogeneous com- 
pensating distributions of holes for all other wavenumbers in the Brillouin zone. The 
total number of states involved in the contribution w p  is zero, in agreement with the 
general formula (38). In particular, for N even there exists the coatom p = N/2,  for 
which 

pN,,*(k)= ( - l )knN'2/N.  (43) 
This corresponds to the term K = N / 2  in the sum in equation (41), and describes a 
'homogeneously alternating' distribution of condensations (k even) and holes (k  odd). 

For K =p' we obtain 

for c y p (  K ~ )  2 (Y 

for ( Y ~ ( K ~ )  = a - 1 (44) 

This contribution differs from zero only for some generalised stars, B, ,c  CPom,n, where 
K~~~~ is given by equation (35 ) ,  and corresponds to a distribution of holes over each 
k E B which is divisible exactly by p a - ' ,  together with the compensating condensations 
for each k E B which is divisible by higher powers of p .  For all other k E B this 
contribution vanishes. Equation (321, together with formulae (A1.18) and (A2.14), 
provides an easy derivation of similar more extended formulae for other special cases. 

r P - l )  otherwise. 

NIP' 

N 
W N , ~ P (  K O )  =-x -p"- '  
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5. An example 
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We proceed to illustrate our calculations on an example: 

N = 9 0 = 2  Y. 32X 5 7 ~ (  N )  = {2,3,  5 } .  (45) 

The lattice of divisors K (90) is presented in figure 1 .  The decomposition of the Brillouin 
zone 

(46) 

into generalised stars is given in table 1 .  A comparison of the first column of this 
table, where divisors K E K(90) are ordered according to the natural order implied by 
the embedding K (90) c 2, with figure 1 yields an imagination of the difference between 
the cyclic order in the linear chain fi and the partial order in the lattice K ( N )  imposed 
by atoms p of the socle T (  N ) .  A brief glance at the last column illustrates the meaning 

B = (0, * l ,  *2 , .  . . , *44,45} 

Figure 1. A geometric picture of the lattice K ( 9 0 ) .  The nodes 2, 3 and 5 are the atoms of 
the lattice, and 45, 30 and 18 are the corresponding coatoms. Arrows indicate the partial 
order. 

Table 1. Decomposition of the Brillouin zone into generalised stars for N = 90. 
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Table 2. The density w . ( K ~ )  for N = 90 in units of n " / N .  

K / K ~  1 2 3 5 6 9 10 15 18 30 45 90 

1 0 0 -3 0 3 6 0 12 -6 -12 -24 24 
2 0 0 3 0 3 -6 0 -12 -6 -12 24 24 
3 - 1  1 2 4 -2 2 -4  -8  -2 8 -8  8 
5 0 0 3 0 - 3 - 6  0 3 6 -3 -6 6 
6 1 1 -2 -4  -2 -2 -4  8 -2 8 8 8  
9 4 -1 4 -4  -1  4 4 -4 -1  4 -4 4 

10 0 0 - 3  0 - 3  6 0 - 3 6  -3  6 6  
15 2 - 1  -2  2 2 -2  - 1  -2  2 2 -2 2 
18 -1  -1  -1  4 - 1  -1  4 4 -1  4 4 4  
30 -1  -1  2 - 1  2 2 -1  2 2  2 2 2  
45 -1 1 - 1  - 1  1 - 1  1 - 1  1 1 - 1  1 
90 1 1 1 1 1 1 1  1 1  1 1 1  

of generalised stars as some 'rarefied' subsets of the set (46): each pair of nearest 
neighbours (in the cyclic order) in a generalised star B, ,  K E K (90), are separated in 
B by at least one element of another generalised star. 

The results for the density of states are given in table 2. The last row of this table 
corresponds to the homogeneous contribution ~ 9 0  (equation (34)), and the next to last 
to the homogeneously alternating contribution w45 (equation (43)), labelled by the 
coatom 2 = 45 of the atom K = 2. All those contributions w, which are spread over 
the whole Brillouin zone (i.e. o , ( K ~ )  # 0, K ~ E  K(90)) correspond to the segment 

spanned over the cosocle ii(90) = {45,30,18}. The remaining part of the lattice K(90) 
also forms a segment in this case (accidentally), namely 

[30,90] = {3,6,9, 15, 18,30,45,90} (47) 

[ 1, lo] = {1,2,5, lo}. (48) 
The contributions w,,  K E [ l ,  101 do not vanish (i.e. w , ( K ~ )  # 0) only for K ~ E  [30,90], 
i.e. for the right-hand side elementary cube in figure 1. This numerical result of table 
2 is in agreement with the general formula (35), which yields the minimal element 

K~~~~ = 2OX 3' x 5 O =  3 (49) 
of the segment [ K ~ ~ ~ ~ ,  901 for each K E [ l ,  101. 

6. Final remarks and conclusions 

In this paper we have discussed some invariant properties of the density of states in 
the Brillouin zone for the model of a one-dimensional Heisenberg magnet consisting 
of N spins s arranged to form a linear chain. A detailed study of the analytical 
expression for this density, given in I ,  and some physical interpretation of the mathe- 
matical notions involved in the derivation of this expression provide an insight into 
the structure of the inhomogeneities of this density. We have also demonstrated that 
such a study and physical interpretation constitute a particular example of realisation 
of a general Weyl prescription for the determination of the invariant properties of 
mathematical models with a given symmetry. 

In our case, the symmetry of the problem with respect to the group Aut C N  of all 
automorphisms of the cyclic group C N ,  determining the geometric distribution of nodes 
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of the magnet, implies that the density of states is constant on generalised stars, i.e. 
on some rarefied subsets of the discrete Brillouin zone B, constituting orbits of the 
action of Aut C, on B. All the details of the distribution of inhomogeneities of the 
density of states are determined by selection rules on the lattice K (  N )  of divisors of 
N, being also the lattice of subgroups of the group C,.  According to the above 
description, one can expect that a breaking of translational symmetry of the linear 
chain, e.g. by an admixture, vacancy, etc, should yield a modulation of the density of 
states within a generalised star (the density should then be defined as an appropriate 
quantum mean value, since the wavenumbers k E B cease to be exact quantum numbers). 

We hope that our paper clearly justifies an important role for the arithmetic structure 
of the integer N (prime divisors, lattices, the socle, coatoms, segments, etc) in an 
invariant description of the physical properties of models with a finite number N of 
(identical) constituent parts. Our approach is essentially an application of ancient 
notions like Erastothenes’ sieve for a classification of states of the quantum model of 
the Heisenberg magnet. Description of this approach in terms of Weyl’s prescription 
ensures the manifest invariance of this description. It is helpful to overcome objections 
associated with some floating opinions that the ‘physical’ properties of a model of a 
linear magnet should not depend upon the arithmetic structure of N (at least for N 
large enough) because of an irregular variation of the details of this structure under 
the variation of N. In this context, it is worthwhile to mention that, independently 
from a really irregular change in the details of the arithmetic structure of N, there 
remains a common feature for an arbitrary N, namely the decomposition of the discrete 
Brillouin zone into disjoint subsets, each having a form of being ‘selected by a sieve’, 
i.e. a rarefied subset of the full zone. Such subsets, appearing strange to someone used 
to a functional analysis operating with the notion of continuity, seem for us to be a 
characteristic feature of an adequate description of finite systems. 

Inhomogeneity of the density of states becomes relatively small for large N due 
to the power law n“ (see equation (32)). If it happened, however, that a rarefied band 
was lying low enough in the energy scale, then such a band would lead to a (crystal) 
sublattice with the period K being an element of the (mathematical) lattice K( N ) .  For 
K large enough such a modulation could characterise some incommensurate phases 
of a crystal, resembling incommensurate phases known from recent literature (Bak 
1982). 

The problem of the decomposition of the permutation representation P into irreduc- 
ible representations r k  of the group C N ,  considered in the present paper, can be looked 
at as one of the questions covered by the Racah-Wigner calculus (Biedenharn and 
Louck 1968, 1981 and references therein), in particular with respect to permutation 
representations (Lulek 1985a,b). The solution proposed in this paper can be placed 
at the level of irreducible representations of the translation group of the crystal. From 
the physical point of view it would be interesting to point out some further good 
quantum numbers classifying the states with a given wavenumber k. We hope to 
approach such results by way of an appropriate application of Racah-Wigner calculus 
for transitive representations at the level of irreducible bases. 
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Appendix 1. The lattice of subgroups of a cyclic group 

Let 

(A l . l )  

be the canonical decomposition of an integer N into prime factors. Each prime integer 
p entering non-trivially into the decomposition (A1 .l) (i.e. with positive arithmetic 
exponent ap( N )  > 0) is referred to (in algebra) as an atom of N and the set T (  N )  of 
all atoms of N as the socle of N (Kasch 1977, Gratzer 1978, Rybnikov 1972). 

Consider the set of all subgroups of the cyclic group C,.  Each element of this set 
is a cyclic group C , ,  with the order K equal to a divisor of N. This set, together with 
the relation of partial order defined by the inclusion, forms the so-called lattice (not 
to be confused with a crystal lattice), i.e. a partially ordered set with unique minimal 
element C ,  and maximal CN.  Elements of the lattice of subgroups of C N  can thus be 
uniquely classified by the set (lattice) 

K(N)={KEfillCd(K, N ) = K }  (A1.2) 

of all divisors of N, with Icd(K, N )  denoting the largest common divisor of integers K 

and N. 
The subset 

K p ( N )  = { K  E K ( N ) 1  K = p a p ( K ) ,  OS a p ( ~ )  s cup(N)}c  K ( N )  (A1.3) 

of the lattice K ( N )  of divisors of N encloses primary subgroups of CN,  i.e. subgroups 
of the order of a power of an atom p E n ( N ) .  Primary subgroups are distinguished 
in K ( N )  by the fact that the relation of inclusion defines in each K p ( N ) ,  p E n ( N ) ,  
the linear (not only partial) order and, moreover, none of primary subgroups can be 
presented as the direct product of its non-trivial subgroups. Instead, if K~ E Kpl(  N ) ,  
K~ E K , ( N ) ,  p ,  # p 2 ,  then C,,@ C,, = C,,,, is a subgroup of C N  (i.e. K I K Z  E K (  N ) ) .  
These features yield a nice geometric presentation of the partial order in the lattice 
K ( N )  (Rybnikov 1972, Lulek and Lulek 1987). Namely, the lattice K ( N )  can be 
expressed as the Cartesian product 

(A1.4) 

so that an arbitrary divisor K E K ( N )  is presented by a sequence of its arithmetic 
exponents 

(Al.5) 

corresponding to all atoms of the socle T ( N ) .  Thus, interpreting the divisors K as 
vectors (with integer components given by arithmetic exponents c + ( K ) ,  p E T ( N ) )  in 
a Ir(N)l-dimensional linear space over the field R, equipped with an orthonormal 
basis labelled by atoms of the socle P( N ) ,  we obtain a picture of the lattice K (  N )  as 
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a hyperparallelepiped with edges determined by linearly ordered sets K p (  N ) .  The 
prime divisors 

K = p = ( O ,  . . . ,  I,...,()) P E  4 N )  (A1.6) 

with the unity in a place corresponding to the atom p and zero otherwise, are vectors 
of an orthonormal basis in this space, whereas the divisor 

(Al.7) 

associated with the socle T (  N )  is the maximal element of the hypercubic ‘elementary 
cell’. Thus the lattice K ( N )  constitutes, in this picture, a finite hypercubic lattice 
spanning the hyperparallelepiped. In particular, the number of elements of the lattice 
K ( N )  is 

(A1.8) 

The partial order in the lattice K ( N )  is presented by straight lines connecting the 
nearest neighbours in the hypercubic lattice, equipped with such a direction that the 
projection of each line into the direction of the main diagonal K ,  given by equation 
(A1.7) is positive. Then the relation of inclusion K~ c K~ (i.e. C N , d C K Z )  holds for all 
such pairs ( K ~ ,  K J  E K ( N )  x K (  N ) ,  for which there exists a chain of lines with each 
link directed from K~ to K ~ .  One also assumes K C_ K ,  K E K ( N ) .  In this picture the 
divisors K are nodes, and oriented lines connecting the nearest neighbours are edges 
of a transmission circuit with the minimal element K = 1 = (0,. . . , 0) and maximal 
element K = N = (. . . a,( N )  . . .) playing the role of input and output respectively, with 
the orientation of the lines being the direction of transmission. 

Each divisor K E K (  N )  is associated with the complementary divisor 

K = N / K  (A1.9) 

which also belongs to K (  N ) .  In particular, jj = N / p  is referred to as a coatom of N, 
and the set ii( N )  = { p i p  E T (  N ) }  is the cosocle. Geometrically, the complementary 
divisor I? can be obtained by an inversion of K in the centre of the hyperparallelepiped 
(this centre is not necessarily an element of K ( N ) ) .  

An important notion in the theory of lattices is that of a segment, i.e. essentially a 
kind of subset constituting a new lattice itself with respect to the assumed partial order. 
Let K~ E K ( N ) ,  K~ E K ( N )  and K~ c_ K ~ .  A segment [ K ~ ,  K ~ ]  is a lattice 

[ K l ,  K * ] = { K  E K ( N ) ( K I  K c K 2 } =  K ( K z / K I ) .  ( A l .  10) 

Moreover, for K~ SZ K~ one assumes [ K ~ ,  K ~ ]  = 0, the empty set. Evidently, K~ and K~ 

are minimal and maximal elements of the segment [ K ~ ,  K J  respectively. Geometrically, 
the segment [ K ~ ,  K ~ ]  c K ( N ) ,  K~ c K ~ ,  corresponds to a subhyperparallelepiped in 
1 7 r ( K 2 / K l ) l  S l ~ ( N ) l  dimensions, uniquely determined by the extrema1 elements K~ and 
K ~ .  In particular, if [ K , ,  K ~ ]  = { K ~ ,  K ~ } ,  i.e. for a segment consisting of exactly two 
elements, one has 1 4 K 2 / K l ) l  = 1 ,  i.e. the subhyperparallelepiped reduces to the line 
connecting K~ with K ~ ,  parallel to the edge corresponding to the atom p = K ~ / K ~ .  Then 
K~ is obviously a nearest neighbour of K~ towards the maximal element N, and one 
says that K:! covers K ~ .  The segment [ K ,  K ]  = { K } ,  K E K ( N )  is a trivial lattice, consisting 
of one element. 

It is possible to determine uniquely the minimal segment enclosing two arbitrary 
divisors K~ E K ( N )  and K ~ E  K ( N )  (they can be incomparable by the partial order in 
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K (  N)). To this aim, one introduces two binary operations on K (  N): the intersection 
A : K ( N ) x K ( N ) + K ( N ) ,  given by 

K 1  A K2=1Cd(K1, K2)  K~ E K ( N )  K 2 E  K ( N )  ( A l . l l )  

and the union v : K (  N )  x K (  N )  + K (  N), given by 

K1 V K2=1Cm(K1, K 2 )  

KlK2/1Cd(Ki, K2) ~1 E K ( N )  K 2 E  K ( N )  ( A l .  12) 

where lcm(K1, K ~ )  denotes the least common multiple of K~ and K ~ .  The minimal 
segment in K (  N), enclosing K~ and K~ is [Icd( K 1 ,  K ~ ) ,  lcm( K1, K ~ ) ] ,  with the intersection 
and union as the minimal and maximal elements, respectively. 

We proceed to describe the role of the Mobius function in the lattice K ( N ) .  Let 
us consider the set {f: K x K + 2) of all functions on the Cartesian product of an 
arbitrary lattice K by itself with integral values. This set, equipped with pointwise 
addition 

( f l + f 2 ) ( K I ,  K 2 )  =fi(KI, K 2 ) + f Z ( K l Y  K*) KlEK K 2 €  K (A1.13) 

and multiplication given by 

( f I f A K 1 ,  K2) = c fl(K1, K d f Z ( K 3 ,  K 2 )  KlEK K z E  K (A1.14) 

becomes an algebra, called the algebra of incidences on K (Hall 1967, Rybnikov 1972, 
Satschkov 1977, Gratzer 1978). In particular, the zeta function [, defined by 

*JE[KI.KZ] 

if K~ E K~ 

otherwise 
(Al .  15) 

is an element of this algebra. The Mobius function p :  K x K + Z is the function 
reciprocal to the zeta function in the algebra of incidences on the lattice K, i.e. 
[ p = p l = l , o r  

(Al .  16) 

This formula allows us to determine recursively the Mobius function for an arbitrary 
lattice K. In the case of K (  N) we have 

(A1.17) 

where p : Z + Z  is a standard, single-argument Mobius function for the theory of 
numbers, given by 

for N = 1 I: otherwise. 
p ( N ) =  (-1)IT(N)l if O S ( Y , ( N ) S ~ , ~ E . T T ( N )  (A1.18) 

Thus the support of the restriction of the standard Mobius function p to the lattice 
K ( N )  c Z consists of all these nodes of the parallelepiped K ( N ) ,  which have all 
components (arithmetic exponents) equal to zero or one, i.e. of all nodes adjacent to 
the elementary cell spanned on the socle .TT( N). 
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Appendix 2. The ring of endomorphisms of a cyclic group 

The ring 

EndC, = { v l l l E  fi} (A2.1) 

consists of endomorphisms v1 : C N  + CN, I E fi, determined by the formula 

vl( j )  = 1 mod N j e  I? (A2.2) 

with the pointwise addition and the composition of mappings as the multiplication. 
We thus have 

vI+vl’= v ( I + I ’ ) m o d N  I € f i  1‘E fi (A2.3) 

vlvl’= vI’vl= v(1l ’ )modN 1 E f i  I ’E fi (A2.4) 

so that the ring End C N  is isomorphic to the ring Z N  of remainders modulo N: 

End CN 2 Z N  = ( fi, ‘+’ mod N, ‘.’ mod N) (A2.5) 

with the canonical isomorphism A : 2, + End C N  given by A ( I )  = vl, 1 E fi. 
The additive group 

C*,= A(& ‘+’mod N) (A2.6) 

of the ring End C, is called the dual group to the group CN(Lang 1970, § 11). Although 
C N  and C*, are mutually isomorphic as abstract groups (with the isomorphism A ) ,  it 
is convenient to distinguish them in crystallography by attaching different meanings 
to carrier sets of their regular representations: the orbit I? of C,, given by equation 
(4), defines the set of nodes of the crystal in ‘real space’, whereas the orbit of C*, can 
be assumed to be the Brillouin zone B given by equation (6), i.e. a set of points in 
‘momentum space’. Assuming the bijection +: I?+ B, given by the formula 

} ,E A for 1s N / 2  
for 1 > N / 2  

(A2.7) 

and defining a one to one mapping of the set fi on the symmetric Brillouin zone 
(symmetric with respect to its centre, k = 0), one can write down the regular representa- 
tion of the dual group C*, as 

) 1 E f i  k E  B 
k 

Oi’ ( + ( ( I +  k) mod N)  (A2.8) 

i.e. as the counterpart of equation (4) for the ‘momentum space’, defining the action 
of the group C N  in the Brilluoin zone B. Both regular representations differ only by 
labelling of elements of orbits fi and B, and of elements of groups C N  and C*,; the 
canonical correspondence between these labellings is given by the bijection + and 
isomorphism A. 

The kernel of the endomorphism T~ E End C N  is a subgroup C, a C N  of order 

K = lcd(1, N) (A2.9) 

generated by the complementary divisor t? in the lattice K (  N), i.e. 

KerT1={ jECNI l j=Nmod  N}=(Z)={K,2R, . . . ,  KK~}=C,. (A2.10) 
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Similarly, the image of this endomorphism constitutes the complementary subgroup 
C,QC, generated by K, i.e. 

(A2.11) 

Equation (A2.9) defines an equivalence relation in the set EndC,, with the 

K E K ( N )  (A2.12) 

labelled by elements K of the lattice K ( N ) .  Each endomorphism in a class (End C , W ) ~  
is characterised by the same kernel and image, given by the groups C, and C,, 
respectively. It is worth observing that the complementary divisor I? has a meaning 
of the order of an endomorphism 71 in the additive group C*, of the ring End C, (so 
that r l N ,  1 E (End C N ) K ) .  In particular, all elements of the class (End C,), are 
of order N, and their kernels are trivial (Ker r ] ,  = { N } ,  1 E (End C,),), so that these 
elements are invertible with respect to multiplication in End C N  (see equation (A2.4)). 
One thus has 

(EndC,) ,=AutCN (A2.13) 

i.e. the class labelled by the minimal divisor K = 1 coincides with the group Aut C,, 
the multiplicative group of the ring End C,. As is known from the theory of numbers, 
the order of the group Aut C, is given by the value cp(N) of the Euler function 
cp:Z++Z+ (with 2, being the set of all positive integers), i.e. 

Im 771  = {G mod N l j  E c,} =(K) {K, 2K,. . . , KK} E c,. 

corresponding classes 

(End C ), = { 771  E End C, I k d (  1, N )  = K } 

for N = l  
cp(N)=/AutC,I= N ( p - l ) / p  for N > 1 .  (A2.14) 

P E T ( , )  

More generally, one has 

I W d  WKI = K E K ( N )  (A2.15) 

with the sum rule 

(A2.16) 

It is worth noting that the set (End C,)< = C*, can be looked at as a generalisation 
of the notion of a conjugacy class in the group C,. Ordinary conjugacy classes in C, 
are orbits of the group Int C N  = { r ] , }  of inner automorphisms, consisting only of the 
unit automorphism v , ,  so that they coincide with elements of C,. The generalisation 
consists in admitting all automorphisms of the group C,. (End C,), is thus the orbit 
generated by Aut C N  from the endomorphism 77,) i.e. 

(EndCN)* = { r ] ~ , r ) m o d N / ~ E  f i , l C W ,  N = l I  (A2.17) 

and the kernel Ker 77, =C, given by equation (A2.10) is the stability group (the 
centraliser of the element 7, E End C N  in the group Aut C,), being the same for each 
of q ( K )  elements of this orbit. 

Apart from the additive action of the ring End C N  on the one-dimensional crystal 
fi given by equation (4), one can also define the multiplicative action given by equation 
(A2.2), so that 

(A2.18) 
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Whereas the additive action can be naturally interpreted in terms of translations 
of the crystal, the multiplicative action cannot be immediately looked at as a generalisa- 
tion of a rotation of the crystal, because of the kernel Ker T r  given by equation (A2.10). 
Such an interpretation can be admitted only for the group Aut C, c End C,, since 
only then is this kernel trivial. Let us define the action of the set of pairs ( 1 ,  v l , ) ,  1 E fi, 
I’E fi, on the crystal fi as the composition of actions (4) and (A2.17), i.e. 

(A2.19) 

The restriction to such pairs ( l ,  T ~ , ) ,  for which T 1 !  E Aut C,, yields a group called a 
holomorph (Hall 1959, Kurosh 1960), i.e. 

H o l C N = C N O  AutCN={( l ,  ~ l ~ ) l l ~ f i ,  q l , E A u t C N }  (A2.20) 

being a semidirect product of the ‘passive’ group C N  with the ‘active’ group Aut C N  
(C, being embedded invariantly in Hol C,). Equation (A2.19) implies the group 
multiplication for Hol C N  as 

(A2.21) 

The group Hol C, thus constitutes a natural generalisation of the notion of a space 
group for the crystal fi, with C N  as the translation group and Aut C, as a group of 
generalised rotations. In particular, the multiplication law (A2.21) for holomorph 
takes on the form of the well known Seitz law for a symmorphic space group. Moreover, 
it is worth noting that the group Aut C, encloses (for N > 2) an invariant subgroup 

Q = { 7 7 1 ,  7 7 N - J ~ A ~ t  CN (A2.22) 

( 4  f 7 7 f J ( h ,  7 7 1 ; )  = ( (11 + 4 1 2 )  mod N, 7 7 ( 1 [ , ~ ) ” 3 N ) .  

consisting of the unit automorphism ql and the ‘linear inversion’ 

(A2.23) 

consisting of the reflection of all nodes of the chain at the node j = N. The subgroup 
Q is thus an ordinary point symmetry group for a linear chain. All other automorphisms 
change the cyclic order in fi non-trivially, so that they are not isometries of our crystal. 
The action of an arbitrary automorphism v1 E Aut C N  preserves, however, the decompo- 
sition 

(A2.24) 

where 

f i K  = { I K  mod NI v1 E Aut C,} (A2.25) 

is the orbit generated from the node K E K( N )  c fi by the group Aut C,. Such orbits 
are classified by elements of the lattice K ( N ) ,  in full analogy with equation (A2.12)- 
(A2.16). An interpretation of a generalised rotation of the crystal fi can be admitted 
only to those permutations U E Z N  which permute only elements within each subset 
f i K ,  K E K (  N )  in the decomposition (A2.24). 

A similar multiplicative action of the ring End C N  can be defined for the Brillouin 
zone B by putting 

) k E B  I €  fi. ‘ ( I )  = (+( kl mod N )  (A2.26) 
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(A2.27) 

This action yields the decomposition 

E =  U E ,  
r e K ( N )  

where 

E ,  = {t ,b( l~ mod N )  Ilcd(1, N )  = 1) (A2.28) 

is an orbit of the group Aut C N ,  in a full analogy with equations (A2.24) and (A2.25). 
The set B, can be interpreted as a generalised star of the wavenumber K ,  i.e. the set 
of wavenumbers generated from K E B by the group of ‘generalised rotations’ Aut C N .  
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